Analytical Solution for Cold-air-drainage flow On Sloping Forest

Zhiwen Luo, Yuguo Li
Department of Mechanical Engineering
The University of Hong Kong, Hong Kong, China
Chuixiang Yi
Queens College, The City University of New York, Flushing, USA
Cold-air-drainage Flow

Source: C.David Whiteman “Mountain Meterology”
Cold-air-drainage Flow

- **Mitigate the nocturnal UHI**
 - Kitada, 1998; Ohashi and Kida, 2002

- **Disperse the urban pollution**
 - Baumbach and Vogt, 1999; Egan, 1984; Lu and Turco, 1994

- **Influence the nocturnal ecosystem-atmosphere exchange**
 - Lee and Hu, 2002; Turnipseed et al, 2003; Yi et al, 2000
Hong Kong Island

Source: www.gearthblog.com
Physical model
Analytical Models

• Prandtl model
 – One dimensional, but gives the detailed structure of the flow profile

• Hydraulic model
 – Only provide the layer-averaged characteristic scales of flow parameters, i.e., velocity, momentum thickness, buoyancy deficit
Vegetation on Slope Flow

- Few studies address this problem
 - Bergen, 1969; Devito and Miller, 1983

- Katabatic flow can occur both within and above the tree canopies
 - Komatsu et al, 2003; Devito and Miller, 1983; Pypker, 2007

- Understand the flow structure can help to estimate the surface fluxes
Cold-air-drainage winds---Forest Canopy

katabatic wind above the canopy

katabatic wind in the canopy

Modified from Prof Tree’s PPT
Propose a simple analytical model by coupling both above and within tree canopies
Assumptions:

- One dimensional normal to the slope
- Constant deficit of potential temperature in the canopy
- Non-linear advection term is ignored in the momentum equation

c_D --- drag coefficient;
a ---- leaf area density;
LAI—leaf area index;
$\Delta \theta$ --- deficit of the potential temperature;
h ---- canopy height
Flow Within Canopy
(non-uniform)

Momentum equation

\[
\frac{\partial u'w'}{\partial n} = g\beta\Delta \sin \alpha + c_DaN\overline{u}^2(n)
\]

Parameterizing the Reynolds stress (Yi, 2008):

\[
\tau(z)/\rho = -u'w'(z) = c_D(z)\overline{u}^2(z)
\]

\[
\frac{\partial(c_D(n)\overline{u}^2(n))}{\partial n} = g\beta\Delta \sin \alpha + c_D(n)a(n)\overline{u}^2(n)
\]

\[
U(n) = \left(\frac{c_D(0)}{c_D(n)}\right)U^2(0)e^{-[LAI-L(n)]} - \frac{g\beta\Delta \sin \alpha}{c_D(n)}\int_{n}^{0}e^{-[L(n')-L(n)]}dn'\right)^{1/2}
\]

\[
L(n) = \int_{-h}^{n}a(n')dn' \quad LAI = L(0)
\]
Flow Above Canopy

Prandtl Model

\[
\begin{aligned}
 g\beta \Delta \theta \sin \alpha &= k_m \frac{d^2 u(n)}{dn^2} \\
 \gamma u(n) \sin \alpha &= k_h \frac{d^2 \Delta \theta}{dn^2}
\end{aligned}
\]

\[u(n) = Ke^{-n/l} \left[\Delta \theta_s \sin(n/l) - C' \cos(n/l) \right]\]

\[l = \left(\frac{4k_m k_h}{N^2 \sin^2 \alpha} \right)^{\frac{1}{4}}\]

\[K = \frac{g\beta}{N} \sqrt{\frac{k_h}{k_m}}\]
Coupling at Canopy Top

\[\begin{align*}
\begin{cases}
\bar{u}(0)_{\text{in-canopy}} &= \bar{u}(0)_{\text{above-canopy}} \\
\Delta \theta\bigg|_{n=0,\text{in-canopy}} &= \Delta \theta\bigg|_{n=0,\text{above-canopy}} = \Delta \theta_s \\
d\bar{u}
\bigg|_{n=0,\text{in-canopy}} &= d\bar{u}
\bigg|_{n=0,\text{above-canopy}} \\
dn
\bigg|_{n=0,\text{in-canopy}} &= dn\bigg|_{n=0,\text{above-canopy}}
\end{cases}
\end{align*} \]

\[\begin{align*}
\left\{ \begin{array}{l}
U(n) = -\left(\frac{C_D(0)}{C_D(n)}\right) K^2 C^2 e^{-[LAI - L(n)']} - \frac{g \beta \Delta \theta_s \sin \alpha}{c_D(n)} \int_{n}^{0} e^{-[L(n') - L(n)']} dn' \bigg)^{1/2} & \text{if } -h \leq n \leq 0 \\
U(n) = Ke^{-n/l} [\Delta \theta_s \sin(n/l) - C \cos(n/l)] & \text{if } n \geq 0
\end{array} \right.
\end{align*} \]
Validation and Discussion

Leaf area density
Velocity Profile

Minimum vertical exchange

Low-level jet

Super-stable layer

Minimum velocity and largest leaf area density

\[Ri = \frac{g}{T} \left(\frac{\partial u}{\partial z} \right)^2 \rightarrow \infty \]
Sensitive Study
---Uniform Case

• Atmospheric Stability
• Slope angle
• Canopy morphology
Influence of Atmospheric Stability and Slope Angle

- \(\alpha = 5^\circ, \gamma = 2 \text{ K/km} \)
- \(\alpha = 5^\circ, \gamma = 4 \text{ K/km} \)
- \(\alpha = 10^\circ, \gamma = 2 \text{ K/km} \)

Canopy top

Steeper slope

Weak stability

Strong stability
Influence of Plant Canopy

![Graph showing the influence of plant canopy on velocity (m/s)]

- LAI = 2
- LAI = 4
- LAI = 10

Velocity (m/s)

Canopy Top

Legend:
- Blue: LAI = 2
- Red: LAI = 4
- Black: LAI = 10
Conclusions

• Analytical solution on cold-air-drainage winds by accounting for the influence of tree canopy is obtained.

• The effect of atmospheric stability and slope inclination is also investigated.

• The influence of different leaf area indexes is studied.
Thank you!